既刊(1巻)

行列特論

作者:
出版社:
-
3,600
※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、行列または線形代数学に関連のある3つの話題を選んで述べたものである。 第1章は、19世紀以来知られているメービウスの反転公式を三角行列との関連から見直し、半順序集合上での反転公式に一般化できる様子を解説したものである。第2章は、1972年にガブリエルの発表した定理に、1973年にゲルファント、バーンシュタイン、ポノマリョーフの3人が共同で見事な証明を与えたことについて述べ、第3章はアーノルドの1971年の論文の内容を主体に述べた。大体新しい論文を読むには大量の予備知識を必要とするが、本書で扱った論文に関しては予備知識をあまり必要としないことで、面白い内容で新しい興味を持ってもらえるものと期待している。
3,600
行列特論

行列特論

3,600

行列特論の他の巻を読む

既刊1巻
1 / 1

通知管理

通知管理を見る

行列特論の作品情報

あらすじ

※この電子書籍は固定レイアウト型で配信されております。固定レイアウト型は文字だけを拡大することや、文字列のハイライト、検索、辞書の参照、引用などの機能が使用できません。 本書は、行列または線形代数学に関連のある3つの話題を選んで述べたものである。 第1章は、19世紀以来知られているメービウスの反転公式を三角行列との関連から見直し、半順序集合上での反転公式に一般化できる様子を解説したものである。第2章は、1972年にガブリエルの発表した定理に、1973年にゲルファント、バーンシュタイン、ポノマリョーフの3人が共同で見事な証明を与えたことについて述べ、第3章はアーノルドの1971年の論文の内容を主体に述べた。大体新しい論文を読むには大量の予備知識を必要とするが、本書で扱った論文に関しては予備知識をあまり必要としないことで、面白い内容で新しい興味を持ってもらえるものと期待している。

行列特論のレビュー

まだレビューはありません。