あらすじ関数解析学は微分方程式や積分方程式などの問題を解くための方法として、20世紀初頭に誕生した分野である。現代では偏微分方程式のほか、数理経済学や数値解析など幅広い方面に応用範囲をもつ。本書はバナッハ空間の解説から始まり、一様有界性定理・開写像定理・閉グラフ定理などの基本定理を証明。そして話題はボッホナー積分や線形作用素の半群にまで及ぶ。証明の式変形は非常に丁寧で、論理展開を追いやすいように書かれている。関数解析の基礎を過不足なくおさえた名教科書。