既刊(1巻)

解釈可能なAI 機械学習モデルの解釈手法を実践的に理解する

-
4,530
AIシステムを動かすモデルの解釈可能性を高め、説明可能なAIへの道を開く 本書では、線形回帰や決定木などのシンプルなホワイトボックスモデルから、深層ニューラルネットワークなどのようなブラックボックスモデルまで、その解釈手法とPythonによる実装を解説。「どのように動作し、予測に至ったのか」に答え、モデルを「解釈可能」にするためのアプローチを網羅的に扱い、そして更に「なぜ、この予測をしたのか」に答え「説明可能なAI」に至るための道を示しています。
4,530
解釈可能なAI 機械学習モデルの解釈手法を実践的に理解する

解釈可能なAI 機械学習モデルの解釈手法を実践的に理解する

4,530

解釈可能なAI 機械学習モデルの解釈手法を実践的に理解するの他の巻を読む

既刊1巻
1 / 1

通知管理

通知管理を見る

解釈可能なAI 機械学習モデルの解釈手法を実践的に理解するの作品情報

あらすじ

AIシステムを動かすモデルの解釈可能性を高め、説明可能なAIへの道を開く 本書では、線形回帰や決定木などのシンプルなホワイトボックスモデルから、深層ニューラルネットワークなどのようなブラックボックスモデルまで、その解釈手法とPythonによる実装を解説。「どのように動作し、予測に至ったのか」に答え、モデルを「解釈可能」にするためのアプローチを網羅的に扱い、そして更に「なぜ、この予測をしたのか」に答え「説明可能なAI」に至るための道を示しています。

解釈可能なAI 機械学習モデルの解釈手法を実践的に理解するのレビュー

まだレビューはありません。