既刊(1巻 最新刊)

Pythonによる時系列分析 ―予測モデル構築と企業事例―

出版社:
-
※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 時系列データを上手く活用し、ビジネス成果を生み出す!!  時系列データを上手く調理することは、これらの問に何かしら解を与えることができます。特に予測モデルを上手く活用すると、過去を振り返り、未来を予測し、現在すべきことを導きだし、成果へと繋げることができます。いくら高精度な予測モデルを手にしても、どう活用すべきかわからないと成果は生まれません。そこで本書ではどのように扱うかを、実際のデータを用いて、使い方を重点的に解説していきます。時系列分析の多くの書籍は数式等を用いて解説していますが、実務的な運用には理論よりもPython等コードで実践していくことが重要です。 なお、事例として以下を取り上げます。 ・モニタリング指標の異常検知によるキャンペーン評価(自動車ディーラー) ・モニタリング指標の異常検知と要因探索(小売りチェーン) ・売上予測モデルを活用したデータドリブン販促(小売りチェーン) ・離反予測モデルによる離反対策ルールの策定(食品・法人向けビジネス) ・チャーンマネジメントのための離反時期予測(携帯電話サービス) ・LTVマネジメントのためのLTV予測(ECサイト) ・広告・販促効果を見える化し最適化するマーケティング・ミックス・モデリング(スポーツジム) 第1章 ビジネスにおける時系列データ活用 第2章 Pythonのデータ分析環境の設定(JupyterLab) 第3章 時系列予測モデル構築・超入門 第4章 時系列データを使ったビジネス成果の上げ方 第5章 時系列データを活用したビジネス事例

Pythonによる時系列分析 ―予測モデル構築と企業事例―の巻一覧

既刊1巻
1 / 1

通知管理

通知管理を見る

Pythonによる時系列分析 ―予測モデル構築と企業事例―の作品情報

あらすじ

※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。 時系列データを上手く活用し、ビジネス成果を生み出す!!  時系列データを上手く調理することは、これらの問に何かしら解を与えることができます。特に予測モデルを上手く活用すると、過去を振り返り、未来を予測し、現在すべきことを導きだし、成果へと繋げることができます。いくら高精度な予測モデルを手にしても、どう活用すべきかわからないと成果は生まれません。そこで本書ではどのように扱うかを、実際のデータを用いて、使い方を重点的に解説していきます。時系列分析の多くの書籍は数式等を用いて解説していますが、実務的な運用には理論よりもPython等コードで実践していくことが重要です。 なお、事例として以下を取り上げます。 ・モニタリング指標の異常検知によるキャンペーン評価(自動車ディーラー) ・モニタリング指標の異常検知と要因探索(小売りチェーン) ・売上予測モデルを活用したデータドリブン販促(小売りチェーン) ・離反予測モデルによる離反対策ルールの策定(食品・法人向けビジネス) ・チャーンマネジメントのための離反時期予測(携帯電話サービス) ・LTVマネジメントのためのLTV予測(ECサイト) ・広告・販促効果を見える化し最適化するマーケティング・ミックス・モデリング(スポーツジム) 第1章 ビジネスにおける時系列データ活用 第2章 Pythonのデータ分析環境の設定(JupyterLab) 第3章 時系列予測モデル構築・超入門 第4章 時系列データを使ったビジネス成果の上げ方 第5章 時系列データを活用したビジネス事例

Pythonによる時系列分析 ―予測モデル構築と企業事例―のレビュー

まだレビューはありません。