既刊(1巻 最新刊)

物理のためのデータサイエンス入門

作者:
-
★いま物理学と密接に関わるデータサイエンスの世界に飛び出そう! 統計の初歩から、ベイズ推定、MCMC、さらにはニューラルネットまで、 初めて活用する人に向けて物理学者ならではの視点で解説。 付録にPythonコードを付した。 【主な内容】 第0章 データサイエンス、機械学習……何が嬉しいの? 第1章 推定と検定 第2章 高次元のモデルへ 第3章 ベイズモデリング 第4章 マルコフ連鎖モンテカルロ法 第5章 正則化とスパースモデリング 第6章 判別モデル 第7章 ガウス過程 第8章 ニューラルネットワーク 付録A Pythonプログラム ※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。

物理のためのデータサイエンス入門の巻一覧

既刊1巻
1 / 1

通知管理

通知管理を見る

物理のためのデータサイエンス入門の作品情報

あらすじ

★いま物理学と密接に関わるデータサイエンスの世界に飛び出そう! 統計の初歩から、ベイズ推定、MCMC、さらにはニューラルネットまで、 初めて活用する人に向けて物理学者ならではの視点で解説。 付録にPythonコードを付した。 【主な内容】 第0章 データサイエンス、機械学習……何が嬉しいの? 第1章 推定と検定 第2章 高次元のモデルへ 第3章 ベイズモデリング 第4章 マルコフ連鎖モンテカルロ法 第5章 正則化とスパースモデリング 第6章 判別モデル 第7章 ガウス過程 第8章 ニューラルネットワーク 付録A Pythonプログラム ※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。

物理のためのデータサイエンス入門のレビュー

まだレビューはありません。