現代エンジニアの必須知識:ディープラーニング技術を身に付けよう!
PythonのディープラーニングフレームワークKerasの開発者である筆者が、多くの人々がディープラーニングを活用できるようPythonコーディングを交えながら分かりやすく説明していきます。「ディープラーニングを適用できる課題とはなにか」「限界はどこにあるのか」を実践解説。Keras/TensorFlow 2対応。第1版(2017年)以降の話題やモデル・理論とその実装コードなど、より丁寧に解説し大幅にボリュームアップしています。
ディープラーニングにより自動言語翻訳や画像認識の精度は飛躍的に向上し、現代のソフトウェア開発者にとってその技術の理解と習得は必要不可欠な分野になりつつあります。
機械学習プラットフォームTensorFlowの上で動作するKerasは、Pythonで書かれたディープラーニングのAPIです。数学やデータサイエンスの専門的な知識がなくともディープラーニングを手軽に実装できるようになります。
Keras開発者であるFran?ois Cholletは、改訂・増補された本書で、機械学習の初心者と経験者、両者に向けたアドバイスを提供します。直感的な説明とわかりやすいイラスト・例題で理解が深まり、ディープラーニングのアプリケーションを開発するために必要なスキルをすぐに身につけることができます。
・ディープラーニングの最初の一歩
・画像分類と画像セグメンテーション
・時系列予測
・テキスト分類と機械翻訳
・テキスト生成、画像生成
1章 ディープラーニングとは何か
2章 ニューラルネットワークの数学的要素
3章 KerasとTensorFlow
4章 ニューラルネットワーク入門:分類と回帰
5章 機械学習の基礎
6章 機械学習のユニバーサルワークフロー
7章 Kerasを使いこなす
8章 コンピュータビジョンのためのディープラーニング
9章 コンピュータビジョンのための高度なディープラーニング
10章 時系列のためのディープラーニング
11章 テキストのためのディープラーニング
12章 生成型ディープラーニング
13章 現実世界でのベスト・プラクティス
14章 本書のまとめ