Pythonによる機械学習の入門書。簡単な機械学習モデルを作るところから、システムの洗練まで、サンプルプログラムを試しながら習得することができます。
本書は、手を動かし実際に動くものを作ることで、機械学習を利用したシステムの全体像を身につけてもらうことを目標としています。
業務で機械学習を利用したサービスか何かを開発しようとすると、様々な課題に直面してしまい戸惑う方は多いのではないでしょうか。
サーバ環境やアプリケーションの構築といった、機械学習に直接関係ない複数の領域についても知っていないと開発が実際には進みません。
また、継続的に機械学習を行うための学習データの収集も、一つの大きな壁となるでしょう。
本書では、こういった壁をなるべく早く乗り越え、機械学習を用いたサービス作りのスタートラインに立ってもらうことを想定して、カリキュラムを組み立てています。
そのため、本書籍は機械学習サービスを作るためのベストプラクティス集やアンチパターン集ではありません。
また、機械学習の詳細な理論の解説や機械学習モデルの実装を行うことも主題ではないため、これらの解説も基本的に行なっていません。
データの収集や整形から機械学習モデルを構築するまでのパイプライン開発、それらモデルのWebサービスへの導入開発まで、様々な幅広いトピックを取り扱っています。
これらのトピックを一つ一つ進めていくことで、機械学習を用いたWebサービスの開発での基礎が習得できるはずです。
本書の構成はこのようになっています。
Chapter01 開発・実行環境を整える
Amazon SageMakerを使った開