既刊(1巻)

pandasデータ処理ドリル Pythonによるデータサイエンスの腕試し

-
3,200
【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 PyQの人気コンテンツが書籍化!データサイエンス力を試してみよう! 【本書の背景】 今日、Pythonを取り巻くデータサイエンスの実務の中で、pandasは欠かすことのできないライブラリーです。pandasには豊富な機能が用意されていますが、実務で使いこなすためには自分の頭で考え、手を動かして試行錯誤することが重要です。また、他の人が書いたコードを読むことで「そんな効率の良い書き方、知らなかった!」といった新たな気づきが得られることもあります(「はじめに」より抜粋)。 【本書の内容】 pandasを使ったプログラミングの腕試しができるように、9つのトピックについて全部で51個の問題を用意しました。各問題にはメインとなる模範解答以外にも「別解」を用意し、なるべくいろいろな考え方に触れられるよう構成しています(「はじめに」より抜粋)。 【PyQ(パイキュー)とは】 株式会社ビープラウドが運営するブラウザだけで学べるオンライン学習サービス。 【本書の問題の一例】 ・最小と最大を抽出するには ・条件で行を絞り込むには ・文字列を日付時刻に変換するには 【学習環境】 実行環境:PyQ、Jupyter Lab 利用言語:Python 3.11 利用ライブラリ:pandas:1.5.2、JupyterLab:3.5.1、Matplotlib:3.6.2 【対象読者】 ・Pythonとpandasの基本的な操作を学んだ入門者 ・pandasでもっと効率的な書き方を知りたい・知識を広げたい方 【前提知識】 ・Pythonの基本的な文法 ・pandasおよびNumPyの基本的な使い方 【目次】 第0章 本書の使い方 第1章 pandasの基礎知識 第2章 データを入出力しよう 第3章 データの概要を確認しよう 第4章 データを部分的に参照しよう 第5章 データを変形しよう 第6章 データを加工・演算しよう 第7章 データをグループ化しよう 第8章 文字列を操作しよう 第9章 日付時刻型のデータを操作しよう 第10章 テーブル表示を見やすくしよう 【著者プロフィール】 株式会社ビープラウド PyQチーム 斎藤 努(さいとう・つとむ) 株式会社ビープラウドにてPyQなどを担当。 古木 友子(ふるき・ともこ) 株式会社ビープラウドにて分析業務などを担当。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。
3,200
pandasデータ処理ドリル Pythonによるデータサイエンスの腕試し

pandasデータ処理ドリル Pythonによるデータサイエンスの腕試し

3,200

pandasデータ処理ドリル Pythonによるデータサイエンスの腕試しの他の巻を読む

通知管理

通知管理を見る

pandasデータ処理ドリル Pythonによるデータサイエンスの腕試しの作品情報

あらすじ

【本電子書籍は固定レイアウトのため7インチ以上の端末での利用を推奨しております。文字列のハイライトや検索、辞書の参照、引用などの機能が使用できません。ご購入前に、無料サンプルにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください】 PyQの人気コンテンツが書籍化!データサイエンス力を試してみよう! 【本書の背景】 今日、Pythonを取り巻くデータサイエンスの実務の中で、pandasは欠かすことのできないライブラリーです。pandasには豊富な機能が用意されていますが、実務で使いこなすためには自分の頭で考え、手を動かして試行錯誤することが重要です。また、他の人が書いたコードを読むことで「そんな効率の良い書き方、知らなかった!」といった新たな気づきが得られることもあります(「はじめに」より抜粋)。 【本書の内容】 pandasを使ったプログラミングの腕試しができるように、9つのトピックについて全部で51個の問題を用意しました。各問題にはメインとなる模範解答以外にも「別解」を用意し、なるべくいろいろな考え方に触れられるよう構成しています(「はじめに」より抜粋)。 【PyQ(パイキュー)とは】 株式会社ビープラウドが運営するブラウザだけで学べるオンライン学習サービス。 【本書の問題の一例】 ・最小と最大を抽出するには ・条件で行を絞り込むには ・文字列を日付時刻に変換するには 【学習環境】 実行環境:PyQ、Jupyter Lab 利用言語:Python 3.11 利用ライブラリ:pandas:1.5.2、JupyterLab:3.5.1、Matplotlib:3.6.2 【対象読者】 ・Pythonとpandasの基本的な操作を学んだ入門者 ・pandasでもっと効率的な書き方を知りたい・知識を広げたい方 【前提知識】 ・Pythonの基本的な文法 ・pandasおよびNumPyの基本的な使い方 【目次】 第0章 本書の使い方 第1章 pandasの基礎知識 第2章 データを入出力しよう 第3章 データの概要を確認しよう 第4章 データを部分的に参照しよう 第5章 データを変形しよう 第6章 データを加工・演算しよう 第7章 データをグループ化しよう 第8章 文字列を操作しよう 第9章 日付時刻型のデータを操作しよう 第10章 テーブル表示を見やすくしよう 【著者プロフィール】 株式会社ビープラウド PyQチーム 斎藤 努(さいとう・つとむ) 株式会社ビープラウドにてPyQなどを担当。 古木 友子(ふるき・ともこ) 株式会社ビープラウドにて分析業務などを担当。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

pandasデータ処理ドリル Pythonによるデータサイエンスの腕試しのレビュー

まだレビューはありません。