既刊(1巻 最新刊)

現場で使える!NumPyデータ処理入門 機械学習・データサイエンスで役立つ高速処理手法

出版社:
-
機械学習・データサイエンスで役立つ高速処理手法 【本書の概要】 ビッグデータを扱う機械学習の現場では、Pythonの高機能で利用しやすい数学・科学系ライブラリが急速に広まってきています。 本書は、機械学習・データサイエンスの現場でよく利用されているNumPyの基本から始まり、 現場で使える実践的な高速データ処理手法について解説します。 特に、現場でよく扱う配列の処理に力点を置いています。 最終章では機械学習における実践的なデータ処理手法について解説します。 【NumPy(ナンパイ)とは】 NumPyは、機械学習・データサイエンスの現場で扱うことの多い多次元配列(行列やベクトル)を 処理する高水準の数学関数が充実しているライブラリです。 Python単体では遅い処理であっても、C言語なみに高速化できるケースもあり、 機械学習・データサイエンスの分野におけるデータ処理に欠かせないライブラリとなっています。 【対象読者】 機械学習エンジニア、データサイエンティスト 【著者紹介】 吉田拓真(よしだ・たくま) データサイエンス関連のサービスを提供する株式会社Spot 代表取締役社長。 Webメディア『DeepAge』編集長。 尾原 颯(おはら・そう) 東京大学工学部機械工学科所属。 大学ではハードウェア寄りの勉強が多め。 趣味はアカペラとテニス。基本的に運動が好き。最近、ランニングを始める。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

現場で使える!NumPyデータ処理入門 機械学習・データサイエンスで役立つ高速処理手法の巻一覧

通知管理

通知管理を見る

現場で使える!NumPyデータ処理入門 機械学習・データサイエンスで役立つ高速処理手法の作品情報

あらすじ

機械学習・データサイエンスで役立つ高速処理手法 【本書の概要】 ビッグデータを扱う機械学習の現場では、Pythonの高機能で利用しやすい数学・科学系ライブラリが急速に広まってきています。 本書は、機械学習・データサイエンスの現場でよく利用されているNumPyの基本から始まり、 現場で使える実践的な高速データ処理手法について解説します。 特に、現場でよく扱う配列の処理に力点を置いています。 最終章では機械学習における実践的なデータ処理手法について解説します。 【NumPy(ナンパイ)とは】 NumPyは、機械学習・データサイエンスの現場で扱うことの多い多次元配列(行列やベクトル)を 処理する高水準の数学関数が充実しているライブラリです。 Python単体では遅い処理であっても、C言語なみに高速化できるケースもあり、 機械学習・データサイエンスの分野におけるデータ処理に欠かせないライブラリとなっています。 【対象読者】 機械学習エンジニア、データサイエンティスト 【著者紹介】 吉田拓真(よしだ・たくま) データサイエンス関連のサービスを提供する株式会社Spot 代表取締役社長。 Webメディア『DeepAge』編集長。 尾原 颯(おはら・そう) 東京大学工学部機械工学科所属。 大学ではハードウェア寄りの勉強が多め。 趣味はアカペラとテニス。基本的に運動が好き。最近、ランニングを始める。 ※本電子書籍は同名出版物を底本として作成しました。記載内容は印刷出版当時のものです。 ※印刷出版再現のため電子書籍としては不要な情報を含んでいる場合があります。 ※印刷出版とは異なる表記・表現の場合があります。予めご了承ください。 ※プレビューにてお手持ちの電子端末での表示状態をご確認の上、商品をお買い求めください。

現場で使える!NumPyデータ処理入門 機械学習・データサイエンスで役立つ高速処理手法のレビュー

まだレビューはありません。