※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。
深層学習でネットワークを解析する世界最前線の研究を1冊で学ぶ!
深層学習をグラフ(ネットワーク)で表される構造データに対して適用するための研究が盛んになっています。それが、本書で解説するグラフニューラルネットワークです。グラフ中の頂点やグラフ全体を高精度に分類できれば、高度な画像認識、推薦システム、交通量予測、化合物分類、さらには新型コロナウイルス(COVID-19)への対処のための応用なども期待できる、世界最前線の研究です。
本書では、グラフニューラルネットワークの基本的な知識および研究事例について説明し、PyTorchによる実装について紹介するとともに、今後の学習のための情報源についても解説します。Google Colaboratoryで解説するとともに、サンプルコードもついています。
まえがき
第1章 グラフニューラルネットワークとは
第2章 グラフエンベディング
第3章 グラフにおける畳み込み
第4章 関連トピック
第5章 実装のための準備
第6章 PyTorch Geometricによる実装
第7章 今後の学習に向けて
おわりに