※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。
自然言語処理の標準モデル、BERTを使いこなせるようになる!
BERTはGoogleが2018年末に発表した自然言語処理モデルです。「文脈」を考慮した処理が特徴的であり、言語理解を評価する11個のタスクについて最高精度を達成し、今や標準的なモデルとしての地位を確立しています。
本書は、自然言語処理の近年における発展に大きな役割を果たし、かつ応用上も有用であるBERTの入門書です。前半で自然言語処理や機械学習について概説したのち、BERTによって実際にさまざまなタスクを解いていきます。具体的には、文章分類・固有表現抽出・文章校正・類似文章検索・データの可視化を扱います。データセットの処理から、ファインチューニング(BERTを特定の言語タスクに特化させるための学習)、性能の評価までの一連の流れを体験することで、BERTを自分で使えるようになることを目標とします。
なお、BERTで処理を行うためのライブラリとして、深層学習の言語モデルを扱ううえでよく使用されるTransformersを、学習や性能評価を効率的に行うためのライブラリとしてPyTorch Lightningを用います。本書ではTransformersやPyTorch Lightningを用いたことがない読者を想定して、その使い方を一から体系的かつ丁寧に解説します。
▼本書の環境
言語:Python
深層学習フレームワーク:PyTorch
ライブラリ:Transformers, PyTorch Lightning
計算環境:Google Colaboratory
▼本書の特徴
・BERTで実際にさまざまなタスクを解くことができます。
・使用するデータセットを日本語で統一しています。
・ライブラリの使い方を一から体系的に説明します。
第1章 はじめに
第2章 ニューラルネットワークを用いた自然言語処理
第3章 BERT
第4章 Huggingface Transformers
第5章 文章の穴埋め
第6章 文章分類
第7章 マルチラベル文章分類
第8章 固有表現抽出
第9章 文章校正
第10章 文章ベクトルを用いたデータの可視化と類似文章検索
付録A ニューラルネットワークの学習の基礎
付録B Colaboratoryの使い方