※この電子書籍は紙版書籍のページデザインで制作した固定レイアウトです。
機械学習による異常検知の基本と応用がわかる!
本書では、機械学習による異常検知のしくみを、誤差関数に着目して解説します。読者が新しい異常検知システムを自ら構築できるようになることを最終目標とし、機械学習アルゴリズムの基本から解説していきます。
機械学習について誤差関数を中心に理解を深めることによって「外れ値とはなにか」「閾値はどのように設定すればよいか」といった異常検知における基本が自然と理解できます。そういった基礎から入りつつ、時系列データを分析する際の手法と注意点(第3章)や、深層学習を用いた応用例(第4章)といった内容まで踏み込み、最終的には自ら異常検知システムを構築できるよう導きます。
機械学習の各アルゴリズムの説明や例題などには、Pythonのコードが付いています。
自分でプログラムを実行しながら学べる入門書です。
<本書の特徴>
・誤差関数を中心に機械学習の原理を理解することで、異常検知の基本が自然と理解できます。
・基本だけでなく、時系列データに対する異常検知の考えかた(第3章)や、深層学習による応用(第4章)を学ぶことができます。
・Pythonのコード付きなので、手を動かしながら学習することができます。
第0章 機械学習と異常検知
第1章 機械学習と統計解析の基本モデル
第2章 非時系列データにおける異常検知
第3章 時系列データにおける異常検知
第4章 深層学習による異常検知