◆◆数式とコードの距離が近いJuliaで一生モノの考え方を身につけよう!◆◆
線形代数、微積分、最適化、確率・統計の基本的な計算から、
ハミルトニアンモンテカルロ法、階層ベイズ、状態空間モデルの原理までをていねいに解説!
[サポートページ]
https://github.com/sammy-suyama/JuliaBayesBook
[主な内容]
第1章 Juliaの基礎
1.1 Juliaとは
1.2 基本文法
1.3 パッケージの利用
1.4 グラフの描画
第2章 数値計算の基礎
2.1 ベクトル・行列計算
2.2 統計量の計算
2.3 統計量と確率分布のパラメータ
2.4 微分計算
2.5 関数の最適化
2.6 最適化によるカーブフィッティング
2.7 積分計算
第3章 確率計算の基礎
3.1 表を使った確率計算
3.2 式を使った確率計算
3.3 連続値における周辺分布と条件付き分布
3.4 確率的試行のシミュレーション
第4章 確率分布の基礎
4.1 確率分布とは
4.2 Juliaでの確率分布の扱い(Distributions.jl)
4.3 離散型確率分布
4.4 連続型確率分布
4.5 統計モデルの設計
第5章 統計モデリングと推論
5.1 ベルヌーイモデル
5.2 線形回帰
5.3 ロジスティック回帰モデル
第6章 勾配を利用した近似推論手法
6.1 なぜ勾配を利用するのか
6.2 ラプラス近似
6.3 ハミルトニアンモンテカルロ法
第7章 発展的な統計モデル
7.1 ポアソン回帰
7.2 階層ベイズモデル
7.3 状態空間モデル