物語の主人公は、2種類の素数。「4で割って1余る素数」と、「4で割って3余る素数」。一方は「2つの整数の平方和」で表せるが、他方は表せない。一方はx^2+1の素因数に現れるが、他方は決して現れない。両者の無限性を証明したオイラーの巧みな方法とは? 2つの素数の個性がわかる、連分数や平方剰余の相互法則、ガウス素数とのふしぎな関係とは? (ブルーバックス・2015年3月刊)※この商品は紙の書籍のページを画像にした電子書籍です。文字だけを拡大することはできませんので、タブレットサイズの端末での閲読を推奨します。また、文字列のハイライトや検索、辞書の参照、引用などの機能も使用できません。